Temporal Feature Weighting for Prototype-Based Action Recognition

نویسندگان

  • Thomas Mauthner
  • Peter M. Roth
  • Horst Bischof
چکیده

In action recognition recently prototype-based classification methods became popular. However, such methods, even showing competitive classification results, are often limited due to too simple and thus insufficient representations and require a long-term analysis. To compensate these problems we propose to use more sophisticated features and an efficient prototype-based representation allowing for a single-frame evaluation. In particular, we apply four feature cues in parallel (two for appearance and two for motion) and apply a hierarchical k-means tree, where the obtained leaf nodes represent the prototypes. In addition, to increase the classification power, we introduce a temporal weighting scheme for the different information cues. Thus, in contrast to existing methods, which typically use global weighting strategies (i.e., the same weights are applied for all data) the weights are estimated separately for a specific point in time. We demonstrate our approach on standard benchmark datasets showing excellent classification results. In particular, we give a detailed study on the applied features, the hierarchical tree representation, and the influence of temporal weighting as well as a competitive comparison to existing state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human action categorization using discriminative local spatio-temporal feature weighting

New methods based on local spatio-temporal features have exhibited significant performance in action recognition. In these methods, feature selection plays an important role to achieve a superior performance. Actions are represented by local spatio-temporal features extracted from action videos. Action representations are then classified by applying a classifier (such as k-nearest neighbor or S...

متن کامل

Extended weighted linear prediction using the autocorrelation snapshot - a robust speech analysis method and its application to recognition of vocal emotions

Temporally weighted linear predictive methods have recently been successfully used for robust feature extraction in speech and speaker recognition. This paper introduces their general formulation, where various efficient temporal weighting functions can be included in the optimization of the all-pole coefficients of a linear predictive model. Temporal weighting is imposed by multiplying element...

متن کامل

An MCE based classification tree using hierarchical feature-weighting in speech recognition

In this paper a hierarchical classification framework using the feature-weighting tree for the objective of applying diverse weighting to acoustic features is proposed for speech recognition. The hierarchical feature-weighting tree with a flexible structure complexity can be constructed optimally with the optimal splitting for the recognition confusion graph. Based on the minimum classification...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010